
LLNL-MI-692819

DOE-COE Breakouts

J. R. Neely, M. W. Epperly

May 23, 2016



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 

 
 

 

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore 
National Laboratory under Contract DE-AC52-07NA27344. 
 



Breakout	session:	Tools/Compiler/System	Requirements	
Thursday,	April	21	
Lead:	Edgar	A.	Leon	
	
This	session	of	about	20	participants	included	representatives	from	Cray,	Intel,	and	
IBM	as	well	as	two	centers	of	excellence:	LLNL	and	SNL/LANL.	Six	questions	were	
posed	to	the	audience:	(1)	What	tools	exist	today	that	help	achieve	performance	
portability?	(2)	Is	memory	management	the	most	important	area	to	achieve	
performance	portability?	Should	vendors	provide	an	interface	for	tools	to	extract	
information	of	interest?	(3)	How	can	an	application	and	libraries	share	resources	
amiably?	Can	an	application	specify	what	percentage	of	resources	are	willing	to	give	
up	to	a	library?	(4)	What	role	should	compiler	technology	play	in	performance	
portability?	What	features	do	we	already	have?	What	features	are	needed?	(5)	Will	
machine	learning	play	a	significant	role	for	performance	portability?	and	(6)	What	
are	some	guidelines	for	performance	portability	with	respect	to	I/O	patterns	(e.g.,	
burst	buffers)?	How	about	memory	layouts	(for	HBM,	large	shared	caches,	etc.)?	
From	these	questions	four	of	them	were	discussed	and	are	summarized	below.	
	
1.	Existing	tools	that	help	with	performance	portability.	
Several	areas	were	identified	including	compiler-based	tools	(e.g,	Cray's	Reveal,	
OpenARC),	libraries	(e.g,	SCR,	MACSio),	profiling	interfaces	(e.g,	KokkosP,	OMPT),	
and	DSLs	(CHiLL,	AMRStencil).	The	group	also	identified	a	need	for	tools	to	work	
across	architectures	and	provide	and	"integrated"	view	on	heterogeneous	systems.	
There	is	a	clear	desire	to	have	common	interfaces	between	tools	across	different	
platforms.	For	application	developers	it	is	time	consuming	to	have	to	learn	a	new	
tool	when	moving	to	a	new	vendor’s	platform	and	thus	even	though	the	tool	may	
help	address	a	certain	need,	it	is	not	used.	Totalview	and	ScoreP	are	good	examples	
of	tools	that	work	well	across	multiple	platforms.	
	
The	DWARF	debugging	standard	(http://dwarfstd.org/)	was	brought	up	since	
vendors	spend	a	significant	amount	of	time	modifying/extending	it	to	address	its	
shortcomings.	However,	none	of	this	work	is	contributed	back	to	the	community.	It	
would	be	helpful	to	have	the	vendors	work	together	to	update	the	DWARF	standard	
to	include	the	extra	information	that	tools	developers	are	needing	to	create	
executables	and	extract	relevant	information	from	them.	For	example,	the	Intel	
compiler	adds	extra	information	that	Intel	tools	consume;	it	would	be	useful	if	that	
information	was	standardized	in	DWARF	version	5	(future)	so	that	other	tools	could	
use	that	information.	
	
Tools	that	provide	a	more	unified	view	of	a	heterogeneous	system	seem	to	be	
lacking.	One	promising	approach	is	IBM's	HPM.	Another	promising	tool	to	
add/identify	parallelism	in	codes	is	Cray's	Reveal	but	it	does	not	work	with	GPUs	
(OpenMP	4.5).	Having	Reveal	work	with	GPUs	would	be	extremely	useful.	
	
2.	Tools	for	memory	management	on	multi-level	memories.	



There	is	a	strong	desire	for	tools	that	give	application	and	tool	developers	visibility	
into	where	data	is	moving	as	the	application	executes.	Based	on	Karlin's	
presentation	"Fundamental	Cross	Architecture	Multi-Level	Memory	Support,"	the	
following	features	were	identified	to	help	application	and	tool	developers	
understand	data	movement	and	improve	the	placement	of	data	on	a	multi-level	
memory	system:	(1)	Ability	to	mark	user	(subset)	data	structures	and	track	them	in	
the	memory	hierarchy	throughout	a	code	region.	Associate	location,	effective	access	
latency	and	bandwidth.	Latency,	in	particular,	was	emphasized.	For	example,	having	
a	histogram	of	what	data	structures	experience	the	highest	latencies	would	be	
helpful;	(2)	Ability	to	query	memory	properties/attributes:	available	space	
(dynamically),	latency,	bandwidth	(numactl-like);	(3)	Control	placement	using	an	
open	interface	that	would	work	across	architectures,	i.e.,	KNL	and	GPUs.	KNL	uses	
libNUMA,	which	is	supported	in	Linux	but	libNUMA	does	not	allow	access	to	the	
features	described	here;	(4)	Track	data	transferred	from	one	memory	to	another	
and	correlate	to	application's	objects/data	structures.	And,	importantly,	what	entity	
moved	the	data	(e.g.,	runtime	system,	user	initiated,	OS).			
	
PAPI	was	brought	up	as	a	useful	tool	in	the	past	but	does	not	provide	the	memory	
information	desired	and	PAPI	is	CPU	centric.	It	would	be	useful	to	expand	PAPI	to	be	
node-based	but	it	may	include	work	throughout	software/hardware/OS	stack.	
Another	issue	with	PAPI	is	that	the	maintainers,	apparently,	have	lost	most	of	their	
funding	and	thus	the	tool,	in	many	cases,	is	not	accurate	as	brought	up	by	Jeanine	
Cook	in	the	presentation	"The	Importability	of	Performance	Tools."	There	may	be	an	
opportunity	for	DOE	to	support	PAPI	or	perhaps	investigate	other	tools	like	
Perfminer.	There	are	also	tools	like	Memspy,	which	seem	to	provide	standard	
interfaces	to	get	information	about	the	memory	subsystem	but	it	is	not	clear	
whether	this	would	be	enough	to	support	multi-level	memories.	
	
A	key	observation	regarding	these	type	of	tools	is	that	we	need	them	to	be	
accessible	at	the	user-level,	otherwise	cannot	be	used	by	regular	application	or	tool	
developers	on	DOE	clusters.	Finally,	it	is	also	desirable	to	identify	different	
application	uses	cases	of	intended	use	of	a	multi-level	memory	system.	
	
3.	Applications	and	libraries	playing	nicely	
There	is	a	significant	concern	due	to	contention	for	resources	between	applications	
and	libraries:	How	can	application	and	libraries	share	resources	effectively?	What	
happens	when	the	application	needs	all	the	memory,	but	then	a	library	or	other	tool	
needs	to	execute	and	use	resources?	For	example,	an	OpenMP	application	may	need	
to	call	an	MPI-only	library	or	a	library	with	pthreads.	We	need	a	mechanism	to	
orchestrate	friendly	coordination	between	these.	This	may	result	in	primitives	or	a	
"contract"	to	coordinate	the	needs	of	the	application	and	libraries.	Libraries	could	
be	parameterized	based	on	this	contract	but	the	interface	would	need	to	be	defined.	
Cray	does	this	implicitly	with	their	optimized	libraries,	e.g.,	BLAS.	There	is	an	
implicit	handshake	between	the	app	and	the	library.	The	library	may	move	data	
between	memories	or	decide,	based	on	problem	size,	which	device	to	execute	on	
(e.g,	CPU	or	GPU).	It	would	be	helpful	to	further	understand	what	decisions	are	



made	in	these	libraries	and	also	what	"application	state"	was	changed	after	a	library	
was	executed.	
	
4.	Compiler	technology	and	performance	portability.	
The	group	focused	on	two	areas:	code-to-code	generation	and	descriptive	vs	
prescriptive	programming	abstractions	(e.g.,	OpenACC	and	OpenMP).	First,	code-to-
code	generation	(source-to-source	compiler	transformations)	can	be	of	significant	
value	to	achieve	performance	portability.	The	transformed	code	can	retain	
important	semantic	information	that	can	then	be	harvested	by	architecture-specific	
compilers	and	achieve	good	performance.	During	the	workshop	several	examples	
were	demonstrated	including	OpenARC	and	the	importance	of	high-level	
intermediate	representations	and	Domain	Specific	Languages	regarding	stencils	
through	frameworks	such	as	CHiLL	and	ROSE.	There	are	some	disadvantages	
though	mainly	the	ability	to	map	back	to	the	original	source	code.	This	is	a	major	
issue	when	debugging	for	example.	In	addition,	it	takes	many	months	for	a	code	
team	to	"trust"	a	compiler	and	compiler	options.	
	
Second,	descriptive	approaches	such	as	OpenACC	give	the	compiler	more	flexibility	
to	optimize	code	and	reduces	application	developer's	burden	to	tell	the	compiler	
exactly	what	to	do	to	optimize	their	codes.	In	many	cases,	however,	the	compiler	
fails	to	optimize	code	because	of	many	constraints	that	ultimately	the	application	
developer	can	easily	resolve.	Thus,	the	group	proposed	a	combined	approach	that	
would	allow	the	use	of	a	descriptive	interface	first	and	depending	on	the	results	a	
prescriptive	approach	may	be	necessary.	
	
OpenACC	was	developed	to	fill	the	gap	between	OpenMP	and	device	computing	
capabilities.	Now	that	OpenMP	4.5	has	similar	device	support,	OpenACC	is	in	
maintenance	mode	but	feature	frozen.	It	seems	that	some	vendors	will	continue	to	
support	OpenACC	with	bug	fixes	but	are	targeting	OpenMP	for	future	work	and	
improvements.	Considering	that	OpenMP	is	a	prescriptive	approach,	there	is	a	need	
for	the	OpenMP	forum	to	have	a	discussion	about	the	role	of	descriptive	approaches	
within	OpenMP.	
	




